
Finding the jewels in Scaler - a tentative project

v1 12.05.21

Version history

ref date who comments

1 12/05/2021 GTR Initial 'straw man' document for comment

0 Management summary

0.1 The purpose of this document is to outline possible approaches to help a user of Scaler 2 to

manage the vast number of unique musical patterns that the application can create, and in so doing,

maximise the creative benefit they may gain from this wonderful product.

0.2 Two suggestions are proposed. The first is wholly independent of the product itself, and has the

advantage that the Scaler authors need to make no changes to the application for coexistence; the

second approach requires the Scaler authors involvement to make a minor - but wholly transparent -

change, not to the application per se, but to the snapshot dump of the system it can produce.

0.3 This parallel proposed application would be able to record details of auditioned musical patterns

for query and display, and to be able restore the system states at the point at which user saved them.

It is envisaged that the saved patterns could have a user rank applied, and also to have notes and

comments attached.

0.4 An outline of these functions is given in paragraph 3.1.

1 Background to project

1.1 Scaler's starting point for developing musical pieces involves 'songs' 'artists' and 'scales', which

load what might be described as 'progression sets'. Each of these progression sets can then be

overlaid with 'performances' to embellish them, comprising note sequences or rhythmic changes, to

create a musical structure of up to 8 bars long.

Multiple of these structures can then be chained together, and a whole range of variation in terms of

pitch, voicing etc applied (for the most part) at a bar level.

1.2 Just the simple combination of some given progression set and some given performance results

in many hundreds of thousands of potential musical fragments, even before they are chained

together to form longer sequences, or 'per chord' variations are applied.

1.3 For someone wishing to create a composition, in the main, there is no obvious a priori mechanism

for determining if one of these musical fragments will be suitable for some target piece the composer

is seeking to create. One approach to the challenge of finding candidates is to define a subset of

artists, songs and performances which are favoured by the creator's chosen genre(s) (e.g. World,

Trance etc) and hence may generate something of interest, and audition just those, in combination

with some equally subjective subset of performances.

1.4 The approach in 1.3 above - restricting progressions and performances to an initial 'theme based'

preference - however ignores the reality that the combination of a rejected progression and a

rejected performance might be a jewel awaiting discovery. The assumption that subjectively

unsuitable constituents implies that the combination thereof would also not create anything

worthwhile is to fall into the logical trap that the "absence of evidence is evidence of absence".

This note explores alternatives for being able to explore efficiently a wider range of such

combinations in order to maximise the creative potential within Scaler.

2 The auditioning challenge - getting the best out of Scaler.

2.1 In the absence of any sound mechanism for reliably a priori determining which combinations

from a very large number might form the basis of the composer's target piece, efficient ways of

auditioning combinations are required. Such auditioning will probably not be random, but on the

basis of prioritising independently progression sets and performances and working through them

methodically. Even so, there are likely to be a very significant number combinations to audition.

2.2 By default, the composer might take a list of progression sets and performances (not currently

available in hard copy ?) and working through the priority list, mark up (by hand) a short list of

candidates to focus on. This can still very time-consuming, and potentially provides only a subset of

information the composer might wish. (For example the question "Is there anything else in E

Lydian?" etc. would not be easily answered.)

2.3 However, there is already a means within Scaler to provide the framework for a solution to this

efficient auditing problem - the 'export state' function.

3 Framework for an auditioning / reporting solution with the 'export state' file as a basis

3.1 What would simplify and enhance this tedious process is

(a) a rapid and effective mechanism to save the identity and details of some candidate

'composition base' i.e. the user's starting point,

(b) a means to add that choice to a persistent collection of same (which for convenience will

henceforth be referred to as a 'database'),

(c) ideally, a means to append to the data in the database the user's rating of the combination

and potentially, 'notes' on the choices,

(d) a means to report certain property values from that database, and,

(e) a means to query the database.

3.2 By definition (since Scaler can restore the application to the point in time the state export was
performed) all the information available at the time of the save resides in the 'export state' file.
However, although this is ostensibly cognisable to the human eye (being in XML), it is not in the most
part in a form relatable by the user to the music auditioned; the names of songs or artists, for
example, are encoded and not recognisable.

3.3 It follows therefore that either

(a) before such encoded data are added to the persistent store referred to in 3.1 it has to be

mapped to a form recognisable to the user, or,

(b) the encoded data are persisted in the form held in the 'export state' file and then

transformed during operations as at 3.1(d) and 3.1(e) into a user cognisable form.

For reasons explained in the technical notes herein, the latter would seem preferable from a design
perspective.

3.4 This system could be implemented without any change to Scaler or using valuable resources of
the Scaler team. However, for reasons already communicated to the Scaler team, it would be made
rather easier by two simple additions to the state file, being the timestamp forming part of the
export state filename and the XSD schema reference.

3.5 Hence, the user application would list or display summary information from selected auditioned
Scaler combinations, showing such things as song, artist, key and other values, together with a
possible user assigned ranking score and some text notes. This application could either (a) seek to
locate the source XML export state file in some defined location by means of the timestamp or (b)
have the export state data stored in the database as a BLOB. This latter approach opens the scope to
all manner of future developments, since the full data of the save image would be available for
further analysis.

3.6 Simple searches could respond to use queries such as "what did I like in E Lydian" or "what
performances did I choose with song Trance 1" (or of course 'trance *').

3.7 An initial schema for the database will be issued shortly.

4 What this project is not

4.1 Just as important as setting out the goals for what a project is intended to deliver, common
sense (coupled with bitter experience) dictates that it is sound to say what are the goals are not.

4.2 Assume someone is working on a Scaler project and they make changes, although they could
move everything to a DAW and then assume that to be the master working area, a more practical
approach would be to export the state of a project, and then restore that last export state file when
the next phase of development of the piece. How to identity where the project was saved amongst a
number of work in progress files is thus a key issue. This could either be saving this with a
recognisable name, or using the default name and saving to a project specific folder. In this latter
scenario, the user would simply restore the latest time stamped state file on returning to the
project.

4.3 This highlights the apparent Markovian nature (no prior memory other than current state) of the
export state file. It has nothing eye cognisable in it to unambiguously define its origins or its
relationship to any other state export. That can only be done indirectly by the alternatives in 4.2,
namely textually from the file name or physical segregation from other saves by a folder.

4.4 So this project is not intended to (nor can it as currently envisaged in this first instance; however,
see paragraph 7) provide any information about the temporal history of the musical piece being

restored. Its sole purpose is to provide a set of potential candidates of sequence / progression
combinations for future working on from an otherwise unmanageable number of progression /
performance variants. Once one of these candidates has been chosen on as the basis for a piece,
other methods are needed to manage the evolution over time of that piece, in the normal manner
of working on such projects.

4.5 Paragraph 7 discusses potential feature changes which might facilitate the management of a
piece over time, but it is assumed that the Scaler developers will maybe have that on their to-do list
anyway.

5 Technical observations and assumptions

5.1 The author has no knowledge of the inner workings of Scaler, and hence all the following
statements and assertions are on the basis of reasonable (?) inference.

5.2 A given export state file is unique to a local environment in 'identity' (as in that which makes the
file non-fungible, in this case given by the time stamp in the file name) from a practical rather than
theoretical perspective. [It is potentially not unique when the universe of Scaler instances are
considered.] However, the content is not unique; as a simple example two state saves could be
performed without making any changes to the target piece between them and the resulting file
content (since the timestamp is not contained within it) would be bitwise identical.

5.3 Nevertheless, it would still be potentially valid to make the timestamp the primary key in the
envisioned database. This would essentially make it 'write once'; data records would always be
appended. A suggestion which has been made to the Scaler authors to add the time stamp to the
exported state, to avoid having to pick this from the file name during the processing,

5.4 A number of essential (for reporting with human cognition) Scaler property values are encoded
as UUID's in the export state file, which appear to be version 4 UUIDs, since there would be no
obvious rationale for making them version 1, 2 or 3. Following the approach of 3.3(b) these would be
written to the database, and then transformed later, either during initial processing of writing the
database, or subsequently triggered by some external request , or lazily, on demand on the fly.

5.5 Only a small number of UUID values need to be converted to the associated property values to
fulfil the goals of the project. This is because these would be the properties for the user to identify
and assess the usefulness of the persisted states. The actual UUID values can in the main be
determined by changing some property value in Scaler and exporting the state before and after the
change and hence building up a list of correspondences of UUID and property name, and adding
them to a key (UUID) / value (property name) pair list. Winmerge or some other similar utility can
then highlight differences in the XML in the state file, thus revealing the values.

{It may be that the Scaler authors would publish these in which case this tedious task would not be
needed.}

5.6 Since UUIDs are application unique, (in the sense that there would be no UUID synonyms in a
export state file for all of the UUIDs contained therein, regardless of the Scaler property to which
they were assigned) so the system would not have to differentiate between the property types
represented by the UUIDs and hence only a single key / value pair list of UUIDs linking to any set of
properties is required to generate the UUID to property name mapping for user visibility. In other
words, there does not need to be a separate key/value pair list for different properties such as scale
key, or expression set. This simplifies the design somewhat.

5.7 A likely tool to effect the end-user utility would be Talend Studio, which has an open source
version. This would map the state file to a normalised (or more accurately, flattened) store of
relevant properties, (together with any data such as a user rating or notes) probably in SQLite.

6 Alternate approach

6.1 The approach to creating a database in prior paragraphs is predicated on the assumption that no
changes would need to be made to the export state file (but refer paragraph 3.4) and the solution
proposed would have no dependence on Scaler staff. However, certain changes which could be
made by the Scaler authors would not only simplify the database logic, but also enhance he
functionality the database could provide.

6.2 If the Scaler authors could modify the output file so, as well as the UUIDs, the 'native' form of the
data was written to the export state file (i.e. the property value associated with the UUID value), this
would remove the complexities of mapping UUIDs for the suggested user application, and it would
become relatively trivial to effect the functionality needed. It is assumed that the 'native' values
exist in Scaler at the time of the export state action is invoked, since the UUID's have had to have
already been decoded to display the human cognisable equivalents on the application interface.

6.3 Ideally, this modification needs to be transparent to the Scaler code parsing the file on re-
reading this (i.e. the' import state' function) , to minimise any additional maintenance effort for the
Scaler coders, and also to avoid having to add additional XML elements or attributes if further UUID
expansions were requested. A rather hack (but effective) solution to this would be by using
annotations. These can then be picked up by regex in the database update / report / display user
function.

An example might be as follows, using Scaler's camel case element or attribute names :

 xs:element name="ScalerState">
 - <xs:annotation>

<xs:documentation>set\selectedBrowserTab="aaa"\noteFilter="aaa"\selectedScale="aaa"\</xs:doc
umentation>

 </xs:annotation>

 6.4 Changes or additions to these data are thus completely independent of any Scaler logic, avoiding

imposing any material coding / testing - the additional data are wholly transparent to the Scaler
application code at all times.

 6.5 The database application would pick up and persist the values using regex expressions.

7 Chain gang - possibility of future capability.

7.1 It may well be that the following possible functions are already I the plans, knowing how
forward thinking the Scaler team are. However, the fact that the user database envisioned in these
notes is potentially user extensible, may mean that it might be possible to offer some functions
which would be not practical / appropriate for a package product.

7.2 Exported state files have no memory, in that there is no obvious way to determine if two files
were connected, in that one might have been the evolution of another. So it is not possible to
distinguish between 3 export state files which had been produced independently of one another, or
if the 3 files resulted from 3 serial exports during one session or series of sessions - i.e. temporal
snapshots.

file:///D:/music/scaler%20projects/reporting/tmp0000.xsd

7.3 As a result, since all three records would have been persisted in the user database, and a query
would show all three, when in fact the user was only interested in the last one if they originated
from serial updates. Of course, the user could delete prior saved files when performing such serial
changes, but there might have been a material time gap between two saves, making this task much
more reliant on human identification to chose latest state for common snapshots.

7.3 This is the common 'anonymity' issue of distinguishing between 'identity' and 'identifying'. The 3
files all have unique identities, but it is not clear if they share a common heritage, and have no
identifying anchor for that heritage.

7.4 One way to deal with this is to add a property "parentID", to convey whether a saved session was
a 'cold start' or was part of a chain, indicating derivation. By adding this element, and assuming the
timeStamp had been added per the original suggestion, the global uniqueness of the time stamp can
be exploited.

7.5 Clearly the Scaler application can differentiate between a cold start and session information
obtained from restoring a prior state. In a cold start situation if an export state is invoked the
application the parentID can be set to some null values (spaces or NUL) and the time stamp set as it
would be applied to the file name. If an import state operation is invoked, the parentID can be
assigned the time stamp so assigned, and if a further export state is preformed, the timestamp set to
the new value. This means that serial snapshots from a piece being worked on are linked on a
temporal basis, providing on demand PIT ('point in time') recovery.

Crucially, this would allow a referential self-join to follow the evolution of state saves in the
database, so the user could see the saved evolution and back track if required. By way of reminder
of earlier comments, it would be intended to store each export state file as a BLOB in the database,
so there would be no need to have saved the state files elsewhere; they would just be unpacked and
then restored as normal into Scaler.

APENDIX I - Derived XSD schema of the export state file

A1.1 The following is an outline derived schema from the export state file. It will (clearly) not contain
the full metadata in the actual schema for the product (e.g. enumerations, derived types,
restrictions etc.) but it does allow a mapping and transformation application to parse the tree and
generate the necessary Java for the database update process.
The text boxes following the diagrams show those elements with more than one attribute.

diagram

children PlayableItem

used by element ProgressionPattern

attributes Name Type Use Default Fixed Annotation

octave xs:byte required

inversion xs:boolean required

semitoneDelta xs:boolean required

durationCoeffici

ent

xs:decimal required

repeat xs:boolean required

expressionSet

Uuid

xs:hexBinary required

expressionRes

olutionId

xs:byte required

expressionPhra

sePlayStyle

xs:byte required

expressionPhra

sePlayMode

xs:boolean required

expressionScal

eId

xs:string required

arpTiming xs:byte required

arpPatternId xs:boolean required

arpNoteLength xs:byte required

arpOctaveRan

ge

xs:boolean required

strummingProfil

eId

xs:boolean required

strummingDire

ctionId

xs:boolean required

playbackPerfor

manceMode

xs:byte required

groupId xs:boolean required

groupPlayback

Behaviour

xs:byte required

idx xs:NMTOKEN required

tabIdx xs:NMTOKEN required

file:///C:/Users/fran_/Desktop/test%20talend/scaler%20doc.doc%23Link031E8F80
file:///C:/Users/fran_/Desktop/test%20talend/scaler%20doc.doc%23Link031E8E78

APPENDIX II - Accumulated state file enquiry and reporting

Export state

schema
Exported state

file

Extract /

transform /

load

Flattened state

database Additional data entry

Database enquiry and

reporting

